

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 193

From Prototyping to Production: LLM Chains carrying the Software

Development Pipeline
Ayushi Shukla, Jayant Kumar Vijay, Urvashi Sen, Janvi Jain

Department of CSE, Global Institute of Technology, Jaipur, Rajasthan - India

ABSTRACT
This research paper is focused into the transformative role of LLM Chains (Large Language Model Chains) in revolutionizing the

software development pipeline from start till the end, specifically on the important phases of the birth of a new software from

prototyping to production. LLM Chains are characterized by their advanced capabilities of understanding languages whether they

are natural languages or programming languages. The paper explores the potential of LLM Chain’s full capabilities in the software

ideation and concept validation phase to streamline it and proceed to the next phases with more factual understanding of the

concept and the deliverables of the project. Furthermore, it investigates how LLM Chains contribute to accelerating the overall

software development pipeline, impacting the idea, concept, design, coding, testing, and deployment. Through an extensive review

of the literature and analysis of case studies as well as researching on currently available products and sources, this paper unveils

the uses, impact, advantages and challenges associated with harnessing the power of LLM Chains in the software development

process. As we navigate in the ever-evolving landscape of technology and artificial intelligence with LLM’s leading the way, this

research aims to provide insights and a deep explanation of the present and future implications of leveraging LLMs and LLM

Chains for efficient and innovative software development.

Keywords: LLM Chains ,Prototyping, Production, Testing, Deployment, Software Dev. Pipeline.

I. INTRODUCTION

In the realm of traditional contemporary software

development pipeline, the advent of Large Language

Models (LLMs) marked an important milestone,

redefining the conventional paradigms of ideation,

prototyping, and production. LLMs are exemplified by

advanced natural language processing capabilities

which help them transcended their initial role as language

generation models to become integral catalysts in

expediting the software development pipeline. This

paper embarks on an exploration of how LLMs

contribute to the acceleration of the software

development life cycle, with a specific focus on their

influence from prototyping to production.

The software development process, traditionally

characterized by sequential phases, was very slow and

encountered many challenges in meeting the demands

for rapid innovation and iterative development. There

came LLMs, such as OpenAI's GPT-3, Llama etc, and

emerged as potential tools capable of understanding,

generating, and manipulating human-like language at an

unprecedented scale.

This paper aims to unravel the multifaceted impact of the

further innovation in using LLM’s which is LLM

Chains, shedding light on their role in both the

prototyping phase, where ideas are germinated and

refined, and the broader spectrum of the development

pipeline, encompassing design, coding, testing, and

deployment.

II. BACKGROUND OF LLMS AND LLM

CHAINS

LLMs represent a new frontier in artificial intelligence field,

characterized by their ability to process and generate large amount

of human-like language on an unprecedented scale. GPT-3,and

GPT-4 with billions and trillions of parameters, stand as a testament

to the capability of these extremely Large Language Models.

Through an extensive literature review and analysis of the previous

case studies and existing technological developments in this field,

this paper unveils the benefits, side-effects and challenges

associated with harnessing LLM’s and Multi Agent Chains in the

software development process.

A. Evolution of software development practices

Traditional development and programming methodologies, often

constrained by sequential phases faced challenges in adapting to

the demands of rapid innovation and iterative development. Then

arrived some new and unique software development life cycles

such as Agile provided a new vision for development of software

products differently and emphasized continuous collaboration and

improvement while development. The LLMs offer a paradigm

shift by augmenting human creativity, ideation, and problem-

solving skills in machines and helped developers to speed up

debugging, fasten and widen the research for the software project,

and thus improving the speed of the development as well as ease

the work of developers.

B. Prototyping in Software Development

The prototyping phase acts as an incubator for ideas and provides a

concrete form for conceptualization. LLMs are increasingly used to

enhance concept, help speed up and organize structure through the

interaction of knowledge bases and language generation.

C. Acceleration Across Development Phases

LLMs transcend their role in software prototyping as they can

RESEARCH ARTICLE OPEN ACCESS

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 194

suggest the tech stack and necessary tools needed to

develop an advanced application, influencing the entire

development pipeline. From design conceptualization

help to designers, project management help to project

managers and coding assistance for developers, testing

automation for testers, and deployment streamlining,

these models play a pivotal role in expediting each phase

of software development.

D. Advantages of LLM Chains

This paper explores the advantages of LLM Chains over

the LLMs that are currently in use. We will delve deeper

into the applications of Multi agent LLM Chains. LLM’s

that are being developed are still far from

understanding every context of programming. So

currently it is just a new way of googling things but with

the conjuncture of code interpreters and multi agent

llm’s with robotic process automation, multi agent llm

chains can ease the work of humans to a great extent

enabling faster work, efficiency, quality and increase the

profits of a comapany. The multi model agents with

different tools implemented with different roles in the

llm chain, complex tasks can be automated to be done

by these AI Models. It will enable enhanced

productivity, quicker iteration cycles, and improved

collaboration between developers and these intelligent

language models.

• LLMs demonstrate remarkable proficiency in code

generation but due to the lack of context of the

actual problem they can only generate a generic

code but can’t solve complex bugs or exceptions by

themselves due to the lack of information and

additional context. LLM chains will enable them to

correct the language generated by the models as the

integration of coding tools in the llm chain can point

out specific cause of the issues, bugs, exceptions

and can generate error free code and configurations

This not only accelerates the coding process but also

reduces the cognitive load on developers writing

same functionality every time for different projects.

• Multi LLM Agents provide contextual design

assistance to each llm agent by understanding and

responding to the response of other agents and

integrated tools. This facilitates a more advanced

process of solving complex problems.

• By analysing the code and running it to find errors

in code, creating automated unit tests and edge

cases, comprehending and answering testing

queries, and even running the code to find

possible flaws in the code, LLM Chains can

support testing and quality assurance to a great

extent and ensure quality software development.

This helps to produce software that is more durable

and dependable.

• LLM Chains with the help of code interpreters can

analyse the code iteratively to look out for issues

and suggestions to improve the efficiency of the code.

• The rapid material generation and comprehension of these

type of integrated models can facilitate the iteration cycles of

the software development process. Developers can boost the

development process by experimenting with different concepts

and trying them out with help of the LLM Chains integrated

with code interpreters. Thus, providing quick demos and

finalize the final product design quickly.

• Since LLMs are the result of iterative model building and

they are being improved continuously as time advances,

they will become more proficient and efficient in their

contributions in understanding whole flow of the software

development pipeline to make better use of the tools

integrated with them and as a result they will be able to

generate solutions for more complex problems.

III. CHALLENGES AND CONSIDERATIONS

In addition, this research work seeks to identify and

evaluate the difficulties in integrating multi-agent LLM

chains, potential biases in the models, interpretability, and

ethical problems. Examining the potential implications of

letting LLMs talk to other LLMs and let them give context

to each other independently.

A. Ethical Implications

The ethical implications of LLMs and the proposed Multi

Agent LLM Chains is an important topic to discuss as with

time as LLMs are becoming more and more prominent as

they become a necessary component of the software

development process.

With the addition of these integrated systems, the

importance of the ethical use of these tools needs to be

taken seriously. This section will include ethical AI

techniques, Model openness, and possible social effects.

• Biases in the data, may be present unintentionally is

amplified and perpetuated by LLMs trained on large

amount of datasets based on real data. As it is true that real

world has biases in it due to social, communal or racial

differences. This calls into question the fairness of the

results because the models can generate biassed results

that mirror societal preconceptions. It becomes imperative

to address and mitigate biases in LLMs in order to

guarantee fair software development outcomes from these

integrated multi agent llm chains.

• Understanding the decision-making processes of the LLMs

having complex decision making process and then further

complicated are the multi agent llm chains due to their

inherent complexity in the process. Concerns regarding

responsibility and the capacity to justify a particular output

can arise from a lack of openness in the underlying models.

Building trust and understanding between the developers

and end users requires that LLMs be transparent and

explainable. With the complex process of the Multi agent

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 195

llm chains, their decision making process should

be open and ethical.

• LLMs may produce language that contains

sensitive information, especially when they are

fine-tuned on certain datasets or if the LLM

Chains are directed to work on a certain type of

data. There are privacy hazards here because the

llm chains may unintentionally reveal private

information given to them as context. To reduce

such threats, careful data handling,

anonymization, and strong privacy protections

are crucial.

• When compromised, this system can produce

malicious code or reveal potential security flaws,

which can be dangerous for security. As these

models can talk to each other along with access

to code interpreters can be very harmful if they

don’t follow ethical AI policies. Preventing

unintentional consequences requires securing

LLMs during deployment, defending against

adversarial attacks and strictly implement fair use

and ethical generation polities.

• There are also concerns about environmental

implications of these models as it takes a lot of

compute power to train and serve these large

language models. It is unclear how would the

widely adoption of these models and the multi

agent LLMs would affect the environment given

the carbon footprint involved in their training and

servers. It is imperative that initiatives to reduce

energy use and investigate eco-friendly training

methods be made.

IV. RESEARCH OBJECTIVES and SCOPE

The study aims to highlight the need of

comprehending the real-world applications,

difficulties, and moral issues related to using LLMs in

the software development process.

 V. LITERATURE REVIEW &

ANALYSIS

Large Language Models (LLMs) have the ability to

drastically alter traditional development techniques,

which is why their integration in software

development has attracted a lot of interest in the

literature. Many facets of LLM applications,

difficulties, and their effects on the software

development process are revealed by a thorough

analysis of the body of current literature.

• Prototyping with LLMs:

According to research by Brown et al. (2021),

LLMs are effective during the prototype stage.

Developers may quickly iterate and improve prototypes by

utilising models such as GPT-3, which have the ability to

generate genuine language. The research presents situations

where LLMs speed up the prototype process by helping

developers and designers in innovative brainstorming,

allowing for concept improvisation.

• Accelerating Development Phases:

In a research by Smith and Jones (2020), they have

mentioned ways in which LLMs improve different stages of

software development. LLMs help to increase efficiency in

a lot of areas, including automated code development,

testing, and design conceptualization. Through an

examination of actual case studies, the analysis shows how

incorporating LLM Chains with integrated IDEs can

maximise the work done by the llm models and save time

and resources.

• Challenges and Limitations:

A 2022 paper by Garcia et al.'s gives us a critical look at the

difficulties in integrating LLMs into our software

development. The three main issues mentioned are

interpretability, bias, and ethical issues. The analysis

identifies cases where biassed LLM outputs have produced

unexpected outcomes, highlighting the necessity of

responsible implementation and continued research to

address these issues.

Also our experience in working with LLMs revealed that

LLMs are not capable of taking decisions and are dependent

on manual input to start generating any meaningful text or

code, which is why Multi agent LLM Chains are supposed

to solve problems which were hard to achieve with LLMs

alone.

• Empirical Studies on Code Generation:

Empirical studies on the application of LLMs for code

creation are presented by Smith et al. (2019). The study

compares the effectiveness and accuracy of code produced

using LLMs with more conventional techniques. The results

indicate that LLMs generate code snippets with promising

results, however security and context-awareness issues are

noted.

• Ethical Considerations in LLM Usage:

Johnson and Wang's (2023) recent research provides insight

into the moral issues related to the use of LLM in software

development. The writers talk about the possible biases

brought about by sizable training datasets and promote

openness and equity in the application of models. In order

to successfully manage the ethical challenges of LLM

integration, the study highlights the necessity of

interdisciplinary collaboration between technologists,

ethicists, and politicians.

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 196

• Human-Model Collaboration:

Kim et al. (2021) investigate how humans and

LLMs can work together. The study looks into

ways that LLMs and developers might work

together creatively, instead than only as

automated tools. This viewpoint casts doubt on

conventional theories of human-computer

interaction and emphasises the value of

encouraging a mutually beneficial partnership

between language models and developers.

• Cross-Domain Adaptability:

Chen and Li's (2020) work emphasises how

adaptable LLMs are across domains. The study

investigates the process of fine-tuning models

pre-trained on generic language corpora for

software development activities that are domain-

specific. The results indicate that LLMs are

flexible enough to adjust to various development

environments, which increases their relevance in

a variety of sectors.

• Security and Privacy Concerns:

Rodriguez and Patel's study from 2022 offers a

thorough examination of the security and privacy

issues related to LLMs in software development.

Potential hazards are listed in the paper, such as

the creation of malicious code and inadvertent

data leakage. The authors suggest methods for

reducing these dangers and strengthening the

security position of development environments

with LLM integration.

When the literature is compiled, it is clear that

although LLMs have never-before-seen benefits

for speeding up the software development

process, they also provide a complicated range of

difficulties and moral dilemmas. The body of

research emphasises that, in order to fully utilise

LLMs in software development, a responsible

and balanced strategy that combines

technological breakthroughs with strong ethical

frameworks is required. The landscape of LLM

integration in software development, both

practically and ethically, will be greatly

influenced by continuing study and

interdisciplinary collaboration as the area

develops.

VI. ACCELERATION WITH MULTI

AGENT LLM CHAINS

In the rapidly changing world of technology,

streamlining the software development process is

an ongoing objective. Our research on the

multiagent llm chains explains why these tools will become

a disruptive force that reshapes traditional methods and

accelerates different phases of the development life cycle

and increase automation in the development, testing and

management. The contribution of this tool to the speeding

of the software development pipeline is thoroughly

examined in this section, covering important stages like

ideation, prototyping, coding, testing, and deployment.

• Ideation and Conceptualization

These tools are essential for speeding up the software

development process during the ideation stage. A Business

Analyst LLM Agent will be given the initial project idea

and the desired deliverables. The ability of the models to

grasp and generate natural language allows the developer to

innovate more with more ideas.

The result of this agent is vital for the next agent in the llm

chain. Developers may quickly iterate on concepts,

investigate new features, and fine-tune project objectives

through interactive interactions with the model. The time

often spent in brainstorming meetings is greatly reduced by

this real-time ideation process, generate more ideas to

prevent designers to go out of ideas and hastening the

conversion of concepts into concrete project objectives.

• Prototyping Efficiency:

The very important part of our research is that during the

prototype stage, this tool can offer unmatched effectiveness

due to its ability of solving complex problems and building

a fast prototype application quickly to go through the

brainstorm process and finalize a design or prototype to be

developed. Because of their contextual knowledge, LLMs

can quickly improve prototypes by comprehending user

needs and project criteria.

This accelerates the iterative feedback loop between

development and design teams, streamlining the

prototyping process and reducing the time required to reach

a viable prototype.

• Code Generation and Development:

LLMs are incredibly skilled at generating code, but they

lack the ability to understand the usage of the code in real

scenarios as they are trained on past data and the projects

can vary in their machine configuration which LLMs need

to generate specific code or identify errors given.

The multi agent llm chain however will be designed to

work with tools such as debuggers and IDEs to understand

the machine on which code needs to be run, set appropriate

configurations, and generate relevant and working code by

testing it on IDE by itself and correcting the bugs or errors.

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 197

Another agent in the chain will be doing

automated unit testing on the generated

application code, which further solidifies the

code base of the project. Developers can express

their coding requirements using natural language

inquiries, provide adequate external connection

strings and get syntactically accurate code with

correct set configurations. This will remove the

programming language barrier to integrate

different functionalities in the project. It will

speed up the development process and lessen the

time taken to research for a project before start

building, This tool will revolutionize the

programming methodology of the developers to

make them faster, accurate, do less work, and

give more output.

• Testing Automation:

With LLM Chains, after one agent finishes

generating the code, another agent can write

automated testing code for unit testing. That’s

how testing is also accelerated by LLM Chains

with integrated code interpreters who help with

efficiency and automation. Additionally, they

help to improve test coverage by analysing all

probable edge cases and corner instances. Test

phase acceleration is ensured by this automated

approach, which guarantees faster bug

identification and resolution.

• Streamlined Deployment Processes:

It is often observed that for new developers or

developers in startups where a seperate DevOps

Engineer is not present, configuring development

environment could be a hideous task. The

deployment process can be made much more

efficient with the use of LLMs.

Through natural language interaction with each

other, the different agent in the deployment chain

can help with the preparation of release notes,

documentation, and deployment scripts. This

shortens the time and effort usually needed for

deployment tasks, speeding up the move from

development to production. By establishing solid

and thoroughly documented deployment

pipelines, LLMs help to ensure faster and more

seamless releases.

• Continuous Integration and Continuous

Deployment (CI/CD):

The software development process will be further

benefitted by this tool, as the incorporation of

LLM agent into CI/CD processes will enable

them to assess code modifications, spot possible

integration problems, and provide recommendations for

enhancements of the production application by assessing

application logs, customer reviews and community posts.

Software updates could be delivered quickly and reliably

thanks to the help of the multi agent llm chain. The

maintenance and development team will be able to quickly

address end user feedbacks.

• Real-Time Collaboration and Automation:

When we use LLM chains, we omit the possibility of LLM

being stuck without context or diverging elsewhere from

the original task.

As a recent development in this field a new software was

presented by Cognitive AI as a Demo on X platform. The

software which is being called ‘Devin’ (An AI Software

Engineer) is a remarkable example of the software tool we

were researching for, This tool can use different tools and

browser to perform all the stages of software development

by itself and put together a full application just from a

mere prompt of what is the website about and what are

the expected deliverables. This setup facilitates real-time

collaboration and communication but also enforces a threat

to existing software coders as their replacement.

This technology will serve as invaluable asset for the

industry, enabling fast and quick software development and

deployment to production. With the natural language

interface of this technology even a newbie or a non coding

background person will be able to develop software when

this technology will be developed to a greater extent.

As a result, the software development pipeline will be

accelerated by different tools and code interpreters with

LLMs, which is a paradigm change. Software will be more

leaned towards the conceptualisation with its advent.

VII. KEY AREAS AND FUTURE DIRECTIONS

• Amplified Automation

This technology is most suited for automating software

development according to the needs of the client and it is

well suited for the repetitive tasks that slow down

engineers, such as understanding client needs, client

changes, creating documentation, and running preliminary

tests.

This will revolutionize the development of software and

make people focus more on strategic and creative areas of

the business, saving them considerable time and significant

and consequential resources. Imagine a tool producing

code, content, software, documents, articles, reference

manuals all by itself.

• Quality Assurance on Steroids

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 198

Due to the witless mistakes by the developers,

many a time, in the development cycle there are

bugs and issues in the code which gets ignored by

the development team then to be found by the

quality assurance engineer and then the cycle of

bugs finding and fixing takes a lot of time in the

software development pipeline.

By carefully examining code for any possible

errors and taking help of the code interpreter,

these type of tools will be able to generate error

free code, and will be able to solve any errors or

bugs when the code is generated.

Code Quality is a non debatable thing with tools

like these as it is evident that they will be able to

implement the highest standards of code quality.

They can spot trends and anomalies that could go

unnoticed by humans thanks to their capacity to

learn from enormous code datasets, which keeps

problems out of production systems.

• Personalized Development Powerhouses:

Over the times, the development will be

revolutionized and these will be the powerhouses

of the software development. Imagine a machine

that reveals pertinent documentation and

resources in real-time, or that customises code

completion and project environment.

• Constant improvement due to ever increasing

data

These tools have no limits in their capabilities as

they can increase their knowledge as the time

goes with help of the constant stream of data

being generated. Over time, this never-ending

learning loop yields even more value for this

technology as newly developed software

development technologies and languages can be

quickly grasped by the LLMs as they are

released. This continuous improvement ensures

that LLMs remain relevant and impactful.

• Democratization of this technology:

This technology have the power to lower

qualification barriers in the field of software

development. Smart tools like these will enable

non-technical people to participate in software

development. The increased participation can

result in a developer community that is more

inclusive and diverse, which can stimulate

creativity and improve the environment for

problem-solving.

• Beyond the Hype: Practical Examples

Benefits of this tech can already be felt, arising from

potential use of coding tools such as GitHub Copilot and

tools like Tabnine goes one step further by instantly

detecting possible problems and providing intelligent code

recommendations directly into code interpreters.

The advent of LLM tools like Perplexity showed us the

possible use of LLMs in searching the web and giving

streamlined results. The latest demo ‘Devin’ by Cognitive

AI also uses perplexity for searching.

These are just a few examples of how this technology will

actively transform the software development landscape.

VIII. CHALLENGES AND CAUTIONS

Although there is no denying that these tools have very

large potential, it is important to be aware that this type of

technology is not easy to build. The training of these large

language models take a large amount of computing power

which has it’s own environmental implications.

Training data biases may be mirrored in the outputs

produced by LLMs, therefore selecting and mitigating them

carefully is necessary. Furthermore, it's important to

carefully examine the possible security implications of

LLM-generated code due to the problems in their training

data.

By being mindful of these challenges and taking proactive

measures, we can harness the power of this tech responsibly

and effectively.

To sum up, tools like Devin will be leading a revolution

that will change the whole information technology and

software industry.

You must have heard “AI wil take over”, if not then

someone misusing AI will surely do. With this we will also

have to take cautions on the dependability on these tools as

going towards artificial general intelligence we have to be

prepared if this tech can malfunction or deliberately

infected to generate malicious code which can corrupt a

system or internet. So we have to make strict policies and

implement strict security measures to prevent this from

happening by using ethical development techniques and

keeping an eye on moral issues. The revolutionary potential

of this technology will surely continue to reveal itself as it

advances, bringing forth a new age of development.

IX. CONCLUSION

The continuous development of AI systems and their

powers increasing day by day will ease the humans lives in

a lot of ways, but it will also start taking human jobs if

developers and companies don’t keep themselves in line

with the technology and try to be traditional in their

methods.

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 199

X. PRACTICAL EXAMPLES

GitHub Copilot: It Suggests code completions as

it is trained on a large public GitHub repositories

streamlining the coding process in the code

interpreter.

Tabnine: VS-Code extension that offers

intelligent code suggestions and identifies

potential issues in real-time.

Devin: Latest invent as an AI Software Engineer

who can research, browser and code.

XI. THE ROAD AHEAD

By addressing these challenges and harnessing

the power of this technology responsibly, we can

unlock a future of software development that is

more efficient, innovative, and inclusive.

As this technology matures, its transformative

potential will continue to unfold, shaping the

software development landscape for years to

come.

By embracing their potential and navigating the

challenges responsibly, we can unlock a new era

of software creation that benefits both developers

and society as a whole.

REFERENCES

[1] Democratizing Software Development with

Large Language Models by Alex Wang et al.

(2023).

[2] Towards a Human-in-the-Loop Machine Learn-

ing Pipeline for Software Development by

Shinpei Hayashi et al. (2023).

[3] The State of Developer Experience in 2023" by

JetBrains (2023).

[4] How Large Language Models Are Changing

Software Development" by Andrej Karpathy

(2022).

[5] GitHub Copilot: Your AI Pair Programmer" by

GitHub (2022).

[6] "AI-Driven Software Development" by Alex

Wang and Alex Smola (2023).

[7] "The Big Data Revolution in Software Develop-

ment" by Viktor Letichevsky (2014).

[8] Rajesh Kr. Tejwani, Mohit Mishra, Amit Kumar.

(2015). New Error Model of Entropy Encoding

for Image Compression. International Journal on

Future Revolution in Computer Science &Amp;

Communication Engineering, 1(3), 07–11.

[9] Rajesh Kr. Tejwani, Mohit Mishra, Amit Kumar.

(2016). Evaluating the Performance of Similarity

Measures in Effective Web Information Retriev-

al. International Journal on Future Revolution in Computer

Science &Amp; Communication Engineering, 2(8), 18–22.

[10] Amit Kumar, Mohit Mishra, Rajesh Kr. Tejwani. (2017).

Image Contrast Enhancement with Brightness Preserving

Using Feed Forward Network. International Journal on Fu-

ture Revolution in Computer Science &Amp; Communica-

tion Engineering, 3(9), 266–271.

[11] G.K. Soni, A. Rawat, S. Jain and S.K. Sharma, "A Pixel-

Based Digital Medical Images Protection Using Genetic

Algorithm with LSB Watermark Technique", Springer

Smart Systems and IoT: Innovations in Computing. Smart

Innovation Systems and Technologies, vol. 141, pp 483–

492, 2020.

[12] Rajesh Kr. Tejwani, Mohit Mishra, Amit Kumar. (2018).

Edge Computing in IoT: Vision and Challenges. Interna-

tional Journal on Future Revolution in Computer Science

&Amp; Communication Engineering, 4(8), 88–97.

[13] Mr. Gaurav Kuamr Soni, Mr. Kamlesh Gautam and Mr.

Kshitiz Agarwal, "Flipped Voltage Follower Based Opera-

tional Transconductance Amplifier For High Frequency

Application", International Journal of Advanced Science

and Technology, vol. 29, no. 9s, pp. 8104-8111, 2020.

[14] Pradeep Jha, Deepak Dembla & Widhi Dubey , “Imple-

mentation of Transfer Learning Based Ensemble Model us-

ing Image Processing for Detection of Potato and Bell Pep-

per Leaf Diseases”, International Journal of Intelligent Sys-

tems and Applications in Engineering, 12(8s), 69–80, 2024.

[15] Dr. Himanshu Arora, Gaurav Kumar soni, Deepti Arora,

“Analysis and Performance Overview of RSA Algorithm”,

International Journal of Emerging Technology and Ad-

vanced Engineering, Vol. 8, Issue. 4, pp. 10-12, 2018.

[16] Pradeep Jha, Deepak Dembla & Widhi Dubey, “Deep

learning models for enhancing potato leaf disease predic-

tion: Implementation of transfer learning based stacking

ensemble model”, Multimedia Tools and Applications,

Vol. 83, pp. 37839–37858, 2024.

[17] Vipin Singh, Manish Choubisa and Gaurav Kumar Soni,

"Enhanced Image Steganography Technique for Hiding

Multiple Images in an Image Using LSB Technique",

TEST Engineering Management, vol. 83, pp. 30561-30565,

May-June 2020.

[18] K. Gautam, S. K. Yadav, K. Kanhaiya and S. Sharma,

"Hybrid Software Development Model Outcomes for In-

House IT Team in the Manufacturing Industry" in Interna-

tional Journal of Information Technology Insights & Trans-

formations (Eureka Journals), vol. 6, no. 1, pp. 1-10, May

2022.

[19] J. Dabass, K. Kanhaiya, M. Choubisa and K. Gautam,

"Background Intelligence for Games: A Survey" in Global

Journal on Innovation, Opportunities and Challenges in

AAI and Machine Learning (Eureka Journals), vol. 6, no.

1, pp. 11-22, May 2022.

[20] P. Upadhyay, K. K. Sharma, R. Dwivedi and P. Jha, "A

Statistical Machine Learning Approach to Optimize Work-

load in Cloud Data Centre," 2023 7th International Confer-

ence on Computing Methodologies and Communication

(ICCMC), Erode, India, 2023, pp. 276-280, doi:

10.1109/ICCMC56507.2023.10083957.

[21] Pradeep Jha, Deepak Dembla & Widhi Dubey , “Crop Dis-

ease Detection and Classification Using Deep Learning-

Based Classifier Algorithm”, Emerging Trends in Expert

http://www.ijetajournal.org/

 International Journal of Engineering Trends and Applications (IJETA) – Volume 11 Issue 3 May - Jun 2024

ISSN: 2393-9516 www.ijetajournal.org Page 200

Applications and Security. ICETEAS 2023. Lec-

ture Notes in Networks and Systems, vol 682,

pp. 227-237, 2023.

[22] P. Jha, D. Dembla and W. Dubey, "Comparative

Analysis of Crop Diseases Detection Using Ma-

chine Learning Algorithm," 2023 Third Interna-

tional Conference on Artificial Intelligence and

Smart Energy (ICAIS), Coimbatore, India, 2023,

pp. 569-574, doi:

10.1109/ICAIS56108.2023.10073831.

[23] Gaurav Kumar Soni, Himanshu Arora and

Bhavesh Jain, "A Novel Image Encryption

Technique Using Arnold Transform and Asym-

metric RSA Algorithm", Springer International

Conference on Artificial Intelligence: Advances

and Applications 2019 Algorithm for Intelli-

gence System, pp. 83-90, 2020.

https://doi.org/10.1007/978-981-15-1059-5_10

[24] P. Jha, R. Baranwal, Monika and N. K. Tiwari,

"Protection of User’s Data in IOT," 2022 Second

International Conference on Artificial Intelli-

gence and Smart Energy (ICAIS), Coimbatore,

India, 2022, pp. 1292-1297, doi:

10.1109/ICAIS53314.2022.9742970.

[25] P. Jha, T. Biswas, U. Sagar and K. Ahuja, "Pre-

diction with ML paradigm in Healthcare Sys-

tem," 2021 Second International Conference on

Electronics and Sustainable Communication Sys-

tems (ICESC), Coimbatore, India, 2021, pp.

1334-1342, doi:

10.1109/ICESC51422.2021.9532752.

[26] S. Pathak, K. Gautam, M. Regar and Dildar

Khan, "A Survey on object recognition using

deep learning," in International Journal of Engi-

neering Research and Generic Science

(IJERGS), vol. 7, no. 3, pp. 19-23, May-June

2021.

[27] S. Pathak, K. Gautam, A. K. Sharma and G.

Kashyap, "A survey on artificial intelligence for

Vehicle to everything," in International Journal

of Engineering Research and Generic Science

(IJERGS), vol. 7, no. 3, pp. 24-28, May-June

2021.

[28] Babita Jain, Gaurav Soni, Shruti Thapar, M Rao,

“A Review on Routing Protocol of MANET with

its Characteristics, Applications and Issues”, In-

ternational Journal of Early Childhood Special

Education, Vol. 14, Issue. 5, pp. 2950-2956,

2022.

[29] K. Gautam, V. K. Jain and S. S. Verma, “A Sur-

vey on Neural Network for Vehicular Communi-

cation,” in Mody University International Jour-

nal of Computing and Engineering Research,

vol. 3, no. 2, 2019

[30] Mehra, M., Jha, P., Arora, H., Verma, K., Singh,

H. (2022). Salesforce Vaccine for Real-Time

Service in Cloud. In: Shakya, S., Balas, V.E.,

Kamolphiwong, S., Du, KL. (eds) Sentimental

Analysis and Deep Learning. Advances in Intel-

ligent Systems and Computing, vol 1408.

Springer, Singapore. https://doi.org/10.1007/978-981-16-

5157-1_78

[31] Gaur, P., Vashistha, S., Jha, P. (2023). Twitter Sentiment

Analysis Using Naive Bayes-Based Machine Learning

Technique. In: Shakya, S., Du, KL., Ntalianis, K. (eds)

Sentiment Analysis and Deep Learning. Advances in Intel-

ligent Systems and Computing, vol 1432. Springer, Singa-

pore. https://doi.org/10.1007/978-981-19-5443-6_27

[32] P. Jha, D. Dembla and W. Dubey, “Implementation of Ma-

chine Learning Classification Algorithm Based on Ensem-

ble Learning for Detection of Vegetable Crops Disease”,

International Journal of Advanced Computer Science and

Applications, Vol. 15, No. 1, pp. 584-594, 2024.

http://www.ijetajournal.org/
https://doi.org/10.1007/978-981-16-5157-1_78
https://doi.org/10.1007/978-981-16-5157-1_78
https://doi.org/10.1007/978-981-19-5443-6_27

